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Phase ordering in chaotic map lattices with conserved dynamics
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Dynamical scaling in a two-dimensional lattice model of chaotic maps, in contact with a thermal bath at
temperaturd, is numerically studied. The model here proposed is equivalent to a conserved Ising model with
couplings that fluctuate over the same time scale as spin moves. When coupling fluctuations and thermal
fluctuations are both important, this model does not belong to the class of universality of a Langevin equation
known as modeB; the scaling exponents are continuously varying Witand depend on the map used. The
universal behavior of modé is recovered when thermal fluctuations are domingt063-651X99)50711-3
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The kinetics of phase separation as a system is quenched On each sitd of a two dimensional square lattice, con-
below its ordering temperature is the subject of much currensider a dynamical system described by the variakjesnd
research1]. In the dynamical scaling regime the ordering y;, which evolve according to the following map:
process is characterized by a single time dependent length

Z ) L
R(t)~t* representing the average domain siZ&; the (Mi(U) 1[ —+ Mi(U) (7__ Mi(t)”
growth exponent usually does not depend on the dimen- x;(t+1)=erfi —| — = | erff ————| —erff ————| |,
sionality of the system nor on the final temperature of the o)) 2 ai(t) ai(t)
guenching. In most models with nonconserved order param- (oh)
eterz=1/2, while in scalar models with conserved order pa-
rametersz=1/3 [2]. A new exponentd has been recently 1 7+ wi(t) T— mi(t)
introduced by Derridat al.[3] with the hope to better char- yi(t+1)= E[erf( W) +erf( W) } @
acterize the process of phase separation: it is related to the ' '
persistence probabilityp(t) defined as the probability that
the local order parameter at a given point has never changa#herew;(t) =KJoxi(t), ando;(t) = VK[y;(t) - I5x7 (1) ]; K,
since the initial time; typically one findg(t)~t~? [4]. Jo, and r are free parameters. This map has been studied in

In a recent paper phase separation mechanisms have bdd®] in the frame of chaotic neural networks; for a suitable
investigated in the framework of coupled chaotic lattiggls ~ choice of the parameters, it has two symmetric chaotic at-
reaction-diffusion systems in which chaotic maps aretractors, one witx>0 and the other witlx<<0. Hence, an
coupled diffusively[6]. In the strong coupling regime these Ising spina;(t) =sgrix;(t)] can be associated with each dy-
models exhibit nontrivial collective behavior, i.e., long-rangenamical system. At each discrete timestepe assume the
order emerging out of local chaos. [I5] the one-body prob- following dynamics, consisting of two stages: first, all the
ability distribution functions(PDFS of local (continuouy ~ mMaps are iterated. Second, all pairs of nearest neighboring
variables had two disjoint supports; this allowed the unammaps are sequentially swapped with the following exchange
biguous definition of Ising spin variables. Starting from un-probability [11]: Pg,.,=1/(1+expBAE}), where 8 is the
correlated initial conditions, for large coupling values, com-inverse temperaturé\E; is the change in energy that would
plete phase ordering was observed; due to the deterministizecur if the maps were exchanged, and the configurational
nature of the system, the corresponding Ising spin systerénergy is defined ag&= —X;yXi(t)x;(t), the sum being
was at zero temperature. Both the domain &¢& and the over all the nearest neighboring pairs. It is clear that this
persistence(t) showed scaling behavior and the exponentsdynamic conserves the spin magnetizatioa; ; by writing
z and 6 were found to vary continuously with parameters, atE(=—2;,J;;(t) oi(t) orj(t), with J;; (1) =|xi(t)x;(t)[, we
odds with traditional modelfNormal phase ordering behav- observe that this model is equivalent to a conserved Ising
ior, corresponding to the time dependent Ginzburg-Landaunodel with couplings that fluctuate over the same time scale
equation, was recovered in a continuous space limit of th@s spin moves. To study the phase ordering process, uncor-
model [7]. These findings suggest that the phase orderingelated initial conditions were generated as follows: one half
properties of multiphase coupled chaotic lattices are differenef the sites were chosen at random and the corresponding
from those of most models studied traditionally. It is inter- values ofx andy were assigned according to the invariant
esting, therefore, to investigate the nonuniversality of scalinglistribution of the chaotic attractor witk>0, while the
exponents irther systems of chaotic maps. other sites were similarly assigned values wi#i0. Large

In this work, we numerically study the dynamical scaling lattices(up to 1000< 1000 siteswith periodic boundary con-
in a lattice model of chaotic maps such that the correspondditions were used; the persistengé) and the domain size
ing Ising spin model conserves the order parameter. By afR(t) were measuredR(t) was estimated by the condition
suming the system to be in contact with a thermal bath, weC[ R(t),t]=1/2, whereC(r,t)=(o;,,(t)oi(t)) is the two
also study the competition between the autonomous fluctugoint correlation function. The persistenpét) was mea-
tions of couplings and thermal fluctuations. sured as the proportion of sites that has not chargéwm

1063-651X/99/6(5)/5021(4)/$15.00 PRE 60 R5021 © 1999 The American Physical Society



RAPID COMMUNICATIONS

R5022 ANGELINI, PELLICORO, AND STRAMAGLIA PRE 60

R,

2 L

1 B Lol | R L L

10° 10* .
(a)
p
[ @

1

10

(c) (d) I

FIG. 1. Snapshots of the ordering system. Bléckite) pixels
correspond tor=1(—1). Lattice of 10100 sites,3=10, and 107 F
iterations timest=0 (a), t=200 (b), t=25000 (c), and t 3 4

= 10 10
1 000 000(d). (b) t

FIG. 2. Time evolution of the domain siZ(t) (a) and persis-
tencep(t) (b) at zero temperature. Solid lines are best linear fits.

the initial time. Both R(t) and p(t) were averaged over
many different samples of initial conditions.

Let us now discuss our results. In Fig. 1 typical configu-
rations of the ordering system, at various times, are showrvalue of couplings as follows:(J;;)~=(|x;(t)|){|x;(t)|)
the morphology of growing domains is similar to those in the=0.20, the average of s being calculated over the invariant
conserved Ising modé¢Db]. At zero temperatured=«) the  distribution of the chaotic attractor.
system coarsens and exhibits scaling behavior. Chod§ing It is worth stressing that simulations of the spin-exchange
=10, 7=5, and Jy=0.9, we measurez=0.11 and 6 Ising model, at low temperatures, do not provike1/3 but
=0.59. In Fig. Za) the time evolution ofR(t) is shown, avalue inthe range 0.17—0.25, because of corrections due to
while in Fig. 2b) the time evolution of the persistenpét) excess transport in interfacg8]. We cannot exclude that
is shown. We remark that the conserved Ising model withthese effects, peculiar to spin-exchange dynamics, still play a
spin-exchange dynamigg/hich is recovered by suppressing role, at low temperature, in the present model. However, we
couplings fluctuations in the present mod#bes not coarsen simulated, at low temperatures, the spin-exchange Ising
at zero temperatur@]. In the case of finite temperature, we model and, fitting the domain size with the power law form,
find that the growth exponent varies continuously within ~ we measured growth exponents differing from those mea-
Fig. 3 we plot our measures af for some values of the sured in our modelusing the same ratid/T, in the two
temperaturel = 1/8. We observe that increases monotoni- models.
cally with T and reaches the value 1/3 8t=0.125; it re- Now we consider the scaling function. In the scaling re-
mains constant untilf=0.32. Therefore, in the rang€  gime the correlation function obeys the following scaling
€[0.125,0.32, thermal fluctuations dominate over coupling form: C(r,t)=f[r/R(t)]. We remark that recently the uni-
fluctuations and the system belongs to the class of universakersality of the scaling functiofy with respect to details of
ity of a Langevin equation known as modBI[8], which  the system, has been questiorjé&]. In Fig. 4 the scaling
describes the standard conserved Ising mdddien bulk  collapse of the correlation function is depicted for three val-
diffusion dominate over surface diffusidf]). At high tem-  ues of the temperature. At smallR the scaling function has
peratures 1>0.375) the system does not order aR(t) a linear behavior(Porod’s law f~1—ar/R; we measure
tends to a constant after a little transiemt=(0). For tem- «=~0.5, independently of the temperature. On the other
peratures in the range.32,0.37%, our numerical plots of hand, at larger distancdsshows some dependence on the
R(t) do not show a neat scaling behavifiled area in Fig. temperaturgsee Fig. 4 at the moment, we have no argu-
3): probably, in the thermodynamic limit a critical valyk ment to explain this dependence. Concerning the persistence
exists, in this range, separating thre 1/3 behavior from the exponent, at finite temperature we measure the block persis-
z=0 one. Further numerical simulations are needed to studiencepyo.«(t), which, for a sufficiently large block, is much
the phase ordering properties of this system closg;.toWe less affected by thermal corrections thaft) [13]. We find
note that the order of magnitude ¢f, estimated here is that alsof depends on the temperature; for exampleBat
consistent with the critical coupling of the two-dimensional =20, using 88 blocks, we measuré=1.05.
Ising model B.=0.44) if one approximates the average We also simulated systems with different maps. We do
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FIG. 3. Estimated growth exponert vs the temperature FIG. 4. Scaling collapse of the correlation function 8 o
T=1/8. (circles, B=20 (squarey and 8=10 (triangles. Correlations at

eight times, equally spaced in the interya0*, 4x 10%], are shown.
not report details here and only quote the results. We find

that, at fixed temperature, the scaling exponents depend Qfeasures of the scaling function show some dependence on
the map. Changing the parameters in E@3.and (2) and  the temperature. A similar variation of the scaling exponents
fixing K=10, 7=5, Jo=0.95, we measure, at zero tempera-yith parameters was found if5], where the Ising models
ture,z=0.22 and§=1.57; using the one-dimensional map of 45gqciated with the coupled map lattices were not conserving
Ref. [5] [Eq. (2)], at zero temperature, we find=0.07 and  the order-parameter and at zero temperature: here we have
6=0.09. In both of these cases, however, we verify that theonfirmed this behavior in another class of chaotic map lat-
z exponent grows continuously with temperature and, whegices, whose corresponding Ising models are conserving the
thermal fluctuations are dominaatis close to 1/3. The scal- ,der parameter and in presence of thermal fluctuations.
ing functionf is found to be independent of the map at zero Finally, we observe that, in the long term, local chaos
temperature. _ _ _may be seen as boundedfectivenoise. It follows that a

In summary, we have numerically studied the dynamicakjmijar behavior might be found in the dynamical scaling of
scaling in a lattice model of chaotic maps which is equiva-conserved coarsening systems in the presence of multiplica-
lent to a conserved Ising model with fluctuating couplings, ingjye noise[14], i.e., external fluctuations of a control param-
contact with a thermal bath at temperatilirdVhen coupling  eter in the system. Further investigation, especially at the

fluctuations and thermal fluctuations are both important, thi%nalytic level, is needed to clarify the origin of the nonuni-
model does not belong to the class of universality of mode{,ersality described here.

B: the scaling exponents are continuously varying Wignd
depend on the map used. The universal behavior of middel = We thank G. Gonnella for valuable suggestions. We also
is recovered when thermal fluctuations are dominant. Outhank D. Caroppo and G. Nardulli for useful discussions.
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