
y

RAPID COMMUNICATIONS

PHYSICAL REVIEW E NOVEMBER 1999VOLUME 60, NUMBER 5
Phase ordering in chaotic map lattices with conserved dynamics
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Dynamical scaling in a two-dimensional lattice model of chaotic maps, in contact with a thermal bath at
temperatureT, is numerically studied. The model here proposed is equivalent to a conserved Ising model with
couplings that fluctuate over the same time scale as spin moves. When coupling fluctuations and thermal
fluctuations are both important, this model does not belong to the class of universality of a Langevin equation
known as modelB; the scaling exponents are continuously varying withT and depend on the map used. The
universal behavior of modelB is recovered when thermal fluctuations are dominant.@S1063-651X~99!50711-3#

PACS number~s!: 05.45.Ra, 05.70.Ln, 05.50.1q, 82.20.Mj
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The kinetics of phase separation as a system is quen
below its ordering temperature is the subject of much curr
research@1#. In the dynamical scaling regime the orderin
process is characterized by a single time dependent le
R(t);tz representing the average domain size@2#; the
growth exponentz usually does not depend on the dime
sionality of the system nor on the final temperature of
quenching. In most models with nonconserved order par
eterz51/2, while in scalar models with conserved order p
rametersz51/3 @2#. A new exponentu has been recently
introduced by Derridaet al. @3# with the hope to better char
acterize the process of phase separation: it is related to
persistence probabilityp(t) defined as the probability tha
the local order parameter at a given point has never chan
since the initial time; typically one findsp(t);t2u @4#.

In a recent paper phase separation mechanisms have
investigated in the framework of coupled chaotic lattices@5#,
reaction-diffusion systems in which chaotic maps a
coupled diffusively@6#. In the strong coupling regime thes
models exhibit nontrivial collective behavior, i.e., long-ran
order emerging out of local chaos. In@5# the one-body prob-
ability distribution functions~PDFS! of local ~continuous!
variables had two disjoint supports; this allowed the una
biguous definition of Ising spin variables. Starting from u
correlated initial conditions, for large coupling values, co
plete phase ordering was observed; due to the determin
nature of the system, the corresponding Ising spin sys
was at zero temperature. Both the domain sizeR(t) and the
persistencep(t) showed scaling behavior and the expone
z andu were found to vary continuously with parameters,
odds with traditional models.Normal phase ordering behav
ior, corresponding to the time dependent Ginzburg-Lan
equation, was recovered in a continuous space limit of
model @7#. These findings suggest that the phase orde
properties of multiphase coupled chaotic lattices are differ
from those of most models studied traditionally. It is inte
esting, therefore, to investigate the nonuniversality of sca
exponents inother systems of chaotic maps.

In this work, we numerically study the dynamical scalin
in a lattice model of chaotic maps such that the correspo
ing Ising spin model conserves the order parameter. By
suming the system to be in contact with a thermal bath,
also study the competition between the autonomous fluc
tions of couplings and thermal fluctuations.
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On each sitei of a two dimensional square lattice, con
sider a dynamical system described by the variablesxi and
yi , which evolve according to the following map:

xi~ t11!5erfS m i~ t !

s i~ t ! D2
1

2 FerfS t1m i~ t !

s i~ t ! D2erfS t2m i~ t !

s i~ t ! D G ,
~1!

yi~ t11!5
1

2FerfS t1m i~ t !

s i~ t ! D1erfS t2m i~ t !

s i~ t ! D G , ~2!

wherem i(t)5KJ0xi(t), ands i(t)5AK@yi(t)2J0
2xi

2(t)#; K,
J0, andt are free parameters. This map has been studie
@10# in the frame of chaotic neural networks; for a suitab
choice of the parameters, it has two symmetric chaotic
tractors, one withx.0 and the other withx,0. Hence, an
Ising spins i(t)5sgn@xi(t)# can be associated with each d
namical system. At each discrete timestept we assume the
following dynamics, consisting of two stages: first, all th
maps are iterated. Second, all pairs of nearest neighbo
maps are sequentially swapped with the following excha
probability @11#: Pswap51/(11exp$bDEt%), whereb is the
inverse temperature,DEt is the change in energy that woul
occur if the maps were exchanged, and the configuratio
energy is defined asEt52(^ i j &xi(t)xj (t), the sum being
over all the nearest neighboring pairs. It is clear that t
dynamic conserves the spin magnetization(s i ; by writing
Et52(^ i j &Ji j (t)s i(t)s j (t), with Ji j (t)5uxi(t)xj (t)u, we
observe that this model is equivalent to a conserved Is
model with couplings that fluctuate over the same time sc
as spin moves. To study the phase ordering process, un
related initial conditions were generated as follows: one h
of the sites were chosen at random and the correspon
values ofx and y were assigned according to the invaria
distribution of the chaotic attractor withx.0, while the
other sites were similarly assigned values withx,0. Large
lattices~up to 100031000 sites! with periodic boundary con-
ditions were used; the persistencep(t) and the domain size
R(t) were measured.R(t) was estimated by the conditio
C@R(t),t#51/2, whereC(r ,t)5^s i 1r(t)s i(t)& is the two
point correlation function. The persistencep(t) was mea-
sured as the proportion of sites that has not changeds from
R5021 © 1999 The American Physical Society
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the initial time. Both R(t) and p(t) were averaged ove
many different samples of initial conditions.

Let us now discuss our results. In Fig. 1 typical config
rations of the ordering system, at various times, are sho
the morphology of growing domains is similar to those in t
conserved Ising model@9#. At zero temperature (b5`) the
system coarsens and exhibits scaling behavior. ChoosinK
510, t55, and J050.9, we measurez50.11 and u
50.59. In Fig. 2~a! the time evolution ofR(t) is shown,
while in Fig. 2~b! the time evolution of the persistencep(t)
is shown. We remark that the conserved Ising model w
spin-exchange dynamics~which is recovered by suppressin
couplings fluctuations in the present model! does not coarsen
at zero temperature@9#. In the case of finite temperature, w
find that the growth exponent varies continuously withb. In
Fig. 3 we plot our measures ofz for some values of the
temperatureT51/b. We observe thatz increases monotoni
cally with T and reaches the value 1/3 atT'0.125; it re-
mains constant untilT50.32. Therefore, in the rangeT
P@0.125,0.32#, thermal fluctuations dominate over couplin
fluctuations and the system belongs to the class of unive
ity of a Langevin equation known as modelB @8#, which
describes the standard conserved Ising model~when bulk
diffusion dominate over surface diffusion@9#!. At high tem-
peratures (T.0.375) the system does not order andR(t)
tends to a constant after a little transient (z50). For tem-
peratures in the range@0.32,0.375#, our numerical plots of
R(t) do not show a neat scaling behavior~filled area in Fig.
3!: probably, in the thermodynamic limit a critical valuebc
exists, in this range, separating thez51/3 behavior from the
z50 one. Further numerical simulations are needed to st
the phase ordering properties of this system close tobc . We
note that the order of magnitude ofbc estimated here is
consistent with the critical coupling of the two-dimension
Ising model (bc50.44) if one approximates the averag

FIG. 1. Snapshots of the ordering system. Black~white! pixels
correspond tos51(21). Lattice of 1003100 sites,b510, and
iterations times t50 ~a!, t5200 ~b!, t525 000 ~c!, and t
51 000 000~d!.
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value of couplings as follows:̂ Ji j &'^uxi(t)u&^uxj (t)u&
50.20, the average ofx8s being calculated over the invarian
distribution of the chaotic attractor.

It is worth stressing that simulations of the spin-exchan
Ising model, at low temperatures, do not providez51/3 but
a value in the range 0.17– 0.25, because of corrections du
excess transport in interfaces@9#. We cannot exclude tha
these effects, peculiar to spin-exchange dynamics, still pla
role, at low temperature, in the present model. However,
simulated, at low temperatures, the spin-exchange Is
model and, fitting the domain size with the power law for
we measured growth exponents differing from those m
sured in our model~using the same ratioT/Tc in the two
models!.

Now we consider the scaling function. In the scaling r
gime the correlation function obeys the following scalin
form: C(r ,t)5 f @r /R(t)#. We remark that recently the uni
versality of the scaling functionf, with respect to details of
the system, has been questioned@12#. In Fig. 4 the scaling
collapse of the correlation function is depicted for three v
ues of the temperature. At smallr /R the scaling function has
a linear behavior~Porod’s law! f '12ar /R; we measure
a'0.5, independently of the temperature. On the ot
hand, at larger distancesf shows some dependence on t
temperature~see Fig. 4!: at the moment, we have no argu
ment to explain this dependence. Concerning the persiste
exponent, at finite temperature we measure the block pe
tencepblock(t), which, for a sufficiently large block, is much
less affected by thermal corrections thanp(t) @13#. We find
that alsou depends on the temperature; for example atb
520, using 838 blocks, we measureu51.05.

We also simulated systems with different maps. We

FIG. 2. Time evolution of the domain sizeR(t) ~a! and persis-
tencep(t) ~b! at zero temperature. Solid lines are best linear fit
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not report details here and only quote the results. We
that, at fixed temperature, the scaling exponents depen
the map. Changing the parameters in Eqs.~1! and ~2! and
fixing K510, t55, J050.95, we measure, at zero temper
ture,z50.22 andu51.57; using the one-dimensional map
Ref. @5# @Eq. ~2!#, at zero temperature, we findz50.07 and
u50.09. In both of these cases, however, we verify that
z exponent grows continuously with temperature and, wh
thermal fluctuations are dominant,z is close to 1/3. The scal
ing function f is found to be independent of the map at ze
temperature.

In summary, we have numerically studied the dynami
scaling in a lattice model of chaotic maps which is equiv
lent to a conserved Ising model with fluctuating couplings
contact with a thermal bath at temperatureT. When coupling
fluctuations and thermal fluctuations are both important,
model does not belong to the class of universality of mo
B: the scaling exponents are continuously varying withT and
depend on the map used. The universal behavior of modB
is recovered when thermal fluctuations are dominant. O

FIG. 3. Estimated growth exponentz vs the temperature
T51/b.
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measures of the scaling function show some dependenc
the temperature. A similar variation of the scaling expone
with parameters was found in@5#, where the Ising models
associated with the coupled map lattices were not conser
the order-parameter and at zero temperature: here we
confirmed this behavior in another class of chaotic map
tices, whose corresponding Ising models are conserving
order parameter and in presence of thermal fluctuations.

Finally, we observe that, in the long term, local cha
may be seen as boundedeffectivenoise. It follows that a
similar behavior might be found in the dynamical scaling
conserved coarsening systems in the presence of multip
tive noise@14#, i.e., external fluctuations of a control param
eter in the system. Further investigation, especially at
analytic level, is needed to clarify the origin of the nonun
versality described here.

We thank G. Gonnella for valuable suggestions. We a
thank D. Caroppo and G. Nardulli for useful discussions.

FIG. 4. Scaling collapse of the correlation function forb5`
~circles!, b520 ~squares!, and b510 ~triangles!. Correlations at
eight times, equally spaced in the interval@104, 43104#, are shown.
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